NECA 111

Standard for Installing Nonmetallic Raceways (RNC, ENT, and LFNC)

ANSI Canvass Draft
February 2016

National Electrical Installation Standards and NEIS are trademarks of the National Electrical Contractors Association
Foreword

National Electrical Installation Standards™ (NEIS®) are designed to improve communication among specifiers, purchasers, and suppliers of electrical construction services. They define a minimum baseline of quality and workmanship for installing electrical products and systems. NEIS® are intended to be referenced in contract documents for electrical construction projects. The following language is recommended:

Nonmetallic raceways should be installed in accordance with NECA 111-201x, Standard for Installing Nonmetallic Raceways (RNC, ENT, and LFNC).

Use of NEIS® is voluntary, and the National Electrical Contractors Association (NECA) assumes no obligation or liability to users of this publication. Existence of a standard shall not preclude any member or non-member of NECA from specifying or using alternate construction methods permitted by applicable regulations.

This publication is intended to comply with the National Electrical Code (NEC). Because they are quality standards, NEIS may in some instances go beyond the minimum safety requirements of the NEC. It is the responsibility of users of this publication to comply with state and local electrical codes and Federal and state OSHA safety regulations as well as follow manufacturer installation instructions when installing electrical products and systems.

Suggestions for revisions and improvements to this standard are welcome. They should be addressed to:

NECA Standards & Safety
3 Bethesda Metro Center, Suite 1100
Bethesda, MD 20814
(301) 657-3110
(301) 215-4500 Fax
www.neca-neis.org
neis@necanet.org

To purchase National Electrical Installation Standards, contact the NECA Order Desk at (301) 215-4504 tel, (301) 215-4500 fax, or orderdesk@necanet.org. NEIS can also be purchased in .pdf download format at www.neca-neis.org/standards.

Copyright ©2XXX, National Electrical Contractors Association. All rights reserved. Unauthorized reproduction prohibited.

National Electrical Installation Standards and the NEIS logo are registered trademarks of the National Electrical Contractors Association. NEIS is a registered trademark of the National Electrical Contractors Association. National Electrical Code and NEC are registered trademarks of the National Fire Protection Association, Quincy, MA.
Table of Contents

Foreword

1. Scope
 1.1 Products and Applications Included
 1.2 Products and Applications Excluded
 1.3 Regulatory and Other Requirements
 1.4 Mandatory Requirements, Permissive Requirements, Quality and Performance Recommendations, Explanatory Material, and Informative Annexes

2. Definitions

3. Delivery, Handling, and Storage
 3.1 Delivery
 3.2 Handling
 3.3 Storage

4. Installation
 4.1 General
 4.2 Coordination
 4.3 Supports
 4.4 Boxes
 4.5 Sleeves
 4.6 Expansion and Contraction of Rigid Nonmetallic Conduit (RNC)
 4.7 Bending
 4.8 Cutting Raceways
 4.9 Solvent Cementing Joints
 4.10 Raceways Concealed in Masonry and Concrete
 4.11 Seals
 4.12 Cleaning

Annex A: NEC Tables
 Table 352.30 Support of Rigid Polyvinyl Chloride Conduit (PVC)
 Table 352.44 Expansion Characteristics of PVC Rigid Nonmetallic Conduit Coefficient of Thermal Expansion = 6.084×10−5 mm/mm/°C (3.38×10−5 in./in./°F)
 Table 355.30 Support of Reinforced Thermosetting Resin Conduit (RTRC)
 Table 355.44 Expansion Characteristics of Reinforced Thermosetting Resin Conduit (RTRC) Coefficient of Thermal Expansion = 2.7×10−5 mm/mm/°C (1.5×10−5 in./in./°F)
 Table 1, Chapter 9 Percent of Cross Section of Conduit and Tubing for Conductors and Cables
 Table 2, Chapter 9 Radius of Conduit and Tubing Bends

Annex B: Reference Standards
1. Scope

This Standard describes installation procedures for nonmetallic raceways of circular cross-section used for electrical power wire and cable, communications wiring, or fiber optic cables.

1.1 Products and Applications Included

This Standard applies to the following, when installed for commercial, institutional, and industrial applications in nonhazardous locations within the confines of the building structure, including raceways installed under floor slabs:

- Rigid nonmetallic conduit (RNC), including Rigid Polyvinyl Chloride Conduit (PVC) (NEC Article 352) and Reinforced Thermosetting Resin Conduit (RTRC) (NEC Article 355)
- Electrical nonmetallic tubing (ENT) (NEC Article 362)
- Liquidtight flexible nonmetallic conduit (LFNC) (NEC Article 356)

1.2 Products and Applications Excluded

This Standard does not apply to:

- Outdoor installations
- Concrete, tile, or fibrous conduits or ducts
- High Density Polyethylene (HDPE) conduit
- Nonmetallic underground conduit with conductors (NUCC)
- Surface nonmetallic raceways (SNR)
- Nonmetallic extensions
- Nonmetallic auxiliary gutters
- Nonmetallic wireways
- Optical Fiber Raceway as defined in NEC Article 770

1.3 Regulatory and Other Requirements

All information in this publication is intended to conform to the NEC (ANSI/NFPA 70). Installers shall follow the NEC, applicable state and local codes, manufacturer instructions, and contract documents when installing nonmetallic raceway systems.

Only qualified persons as defined in the NEC familiar with the construction and installation of nonmetallic raceways shall perform the technical work described in this publication. Administrative functions such as receiving, handling, and storing nonmetallic raceways and other tasks may be performed under the supervision of a qualified person. All work shall be performed in accordance with NFPA 70E, Standard for Electrical Safety in the Workplace.

General requirements for installing electrical products and systems are described in NECA 1, Standard Practices for Good Workmanship in Electrical Construction (ANSI). Other NEIS provide additional guidance for installing particular types of electrical products and systems. A complete list of NEIS is provided in Annex B.

1.4 Mandatory Requirements, Permissive Requirements, Quality and Performance Recommendations, Explanatory Material, and Informative Annexes
Mandatory requirements in manufacturer instructions, or of Codes or other mandatory Standards that may or not be adopted into law, are those that identify actions that are specifically required or prohibited and are characterized by the use of the terms “must” or “must not,” “shall” or “shall not,” or “may not,” or “are not permitted,” or “are required,” or by the use of positive phrasing of mandatory requirements. Examples of mandatory requirements may equally take the form of, “equipment must be protected . . .,” “equipment shall be protected . . .,” or “protect equipment . . .,” with the latter interpreted (understood) as “(it is necessary to) protect equipment . . .”

Permissive requirements of manufacturer instructions, or of Codes or other mandatory Standards that may or not be adopted into law, are those that identify actions that that are allowed but not required, or are normally used to describe options or alternative means and methods, and are characterized in this Standard by the use of the terms “may,” or “are permitted,” or “are not required.”

Quality and performance recommendations identify actions that are recommended or not recommended to improve the overall quality or performance of the installation and are characterized by the use of the term “should” or “should not.”

Explanatory material, such as references to other Codes, Standards, or documents, references to related sections of this Standard, information related to another Code, Standard, or document, and supplemental application and design information and data, is included throughout this Standard to expand the understanding of mandatory requirements, permissive requirements, and quality and performance recommendations. Such explanatory material is included for information only, and is identified by the use of the term “NOTE,” or by the use of italicized text.

Non-mandatory information and other reference standards or documents relative to the application and use of materials, equipment, and systems covered by this Standard are provided in informative annexes. Informative annexes are not part of the enforceable requirements of this Standard, but are included for information purposes only.
2. Definitions

Electrical Nonmetallic Tubing (ENT). A nonmetallic, pliable, corrugated raceway of circular cross section with integral or associated couplings, connectors, and fittings for the installation of electrical conductors. ENT is composed of a material that is resistant to moisture and chemical atmospheres and is flame retardant.

Liquidtight Flexible Nonmetallic Conduit (LFNC). A raceway of circular cross section of various types as follows:
1. A smooth seamless inner core and cover bonded together and having one or more reinforcement layers between the core and covers, designated as Type LFNC-A.
2. A smooth inner surface with integral reinforcement within the raceway wall, designated as Type LFNC-B.
3. A corrugated internal and external surface without integral reinforcement within the raceway wall, designated as LFNC-C.

LFNC is flame resistant and with fittings and is approved for the installation of electrical conductors.

NOTE: FNMC is an alternative designation for LFNC.

Reinforced Thermosetting Resin Conduit (RTRC). A rigid nonmetallic raceway of circular cross section, with integral or associated couplings, connectors, and fittings for the installation of electrical conductors and cables.

Rigid Nonmetallic Conduit (RNC). A listed raceway of circular cross-section of suitable nonmetallic material that is resistant to moisture and chemical atmospheres, flame retardant, resistant to impact and crushing, resistant to distortion from heat under conditions likely to be encountered in service, and resistant to low temperature and sunlight effects, with integral or associated couplings, connectors, and fittings.

Rigid Polyvinyl Chloride Conduit (PVC). A rigid nonmetallic raceway of circular cross section, with integral or associated couplings, connectors, and fittings for the installation of electrical conductors and cables.

3. Delivery, Handling, and Storage

NOTE: Deliver, handle and store products in accordance with manufacturer's instructions and by methods and means that will prevent damage, deterioration, and loss, including theft, and that will protect against damage from climatic conditions.

3.1 Delivery

Coordinate delivery schedules to minimize storage of products at site and overcrowding of construction spaces.

Transport RNC in groups or bundles in a straight and level position. Transport LFNC and ENT on reels.

Load larger diameter and heavy-walled raceways onto trucks or trailers first when loading multiple bundles of nonmetallic raceways.

Secure each vertical stack of bundles with a minimum of two nylon straps or slings. Use straps and slings a minimum of 100 mm (4 inches) in width. Carefully tighten straps and slings only enough to
secure the load.

NOTE: Do not use chains or metal straps with nonmetallic raceways.

3.2 Handling

Unload raceway bundles one at a time using equipment equipped with forks such as a fork lift or backhoe equipped with forks (Figure 3.2). Be careful not to damage raceways from excessive stresses while moving. Verify that the weights and dimensions of bundles and reels are within the rated capacity of the handling equipment.

When unloading bundles using slings, use two slings positioned such that the center of gravity of the bundle is centered on the lifting equipment. Use care to balance and distribute weight when handling bundles and reels with platform dollies, platform lifts, forklift trucks, skids, and rollers to prevent overturning. Do not damage raceways or protective wrappings with forks of forklift.

If unloading reels is accomplished by crane, use a cradle or shaft through the arbor hole in the reel. Do not lift reels by pulling or lifting by the raceway that is wound on the reel.

Keep personnel clear of the unloading site to prevent injury in the event of equipment failure or shifting of the load.

Do not push bundles from trucks or trailers to the ground. Do not break bundles on the vehicle to allow raceways to fall to the ground.

3.3 Storage

Store raceways and bundles in a horizontal and level position.

Store reels on a hard surface to prevent the reel from sinking into the surface causing the raceway to support its weight and the weight of the reel. Do not store reels on their sides. Block reels to prevent accidental rolling.

Do not exceed manufacturer recommended heights when stacking bundles. Do not stack thin-walled raceway or small bundles of raceway more than 2 meters (6 feet high).

Store raceways in an environment free from excessive dirt, dust, or other airborne contaminants.

Do not cover raceway ends during storage. **NOTE:** Covering raceway ends prevents air passage and may lead to heat buildup in raceways and bundles. The internal temperature of raceways and bundles should not exceed 140°F (60°C). Provide environmental controls or shading to prevent excessive heating of raceways.

For storage up to 6 months, raceway may be stored outdoors uncovered. For outdoor storage longer than 6 months and for storage in altitudes greater than 1000 meters (3000 feet) above sea level, cover raceways with an opaque tarp or ultraviolet light resistant sheeting. **NOTE:** Do not store ENT in an outdoor, exposed location for longer than 60 days.

Store sealed solvent cement containers in temperature between 40°F (5°C) to 70°F (21°C) or in accordance with manufacturer instructions.

4. Installation
4.1 General

Use manufacturer recommended raceways, factory elbows, associated fittings, boxes, and accessories designed, identified, and listed for the intended purpose and environment. *NOTE:* Liquidtight or wet location fitting designs might require a separate sealing ring to be installed outside a box or enclosure to ensure a sealed interface between the body of the fitting and the box.

Install nonmetallic raceways in accordance with manufacturer instructions. Maintain manufacturer recommended and Code required clearances. Make joints between lengths of conduit, and between conduit and couplings, fittings, and boxes, by an approved method.

Use permitted wiring methods. Conductors and cables are permitted to be installed in nonmetallic raceways where such use is not prohibited. Ensure that the number of cables and/or conductors installed in nonmetallic raceways does not exceed the allowable percentage fill specified in Table 1, Chapter 9 of the NEC. See Annex A.

Install raceways, boxes, fittings, and accessories level and plumb, and parallel and perpendicular to nearby surfaces, exposed structural members, and other building systems and components. Run exposed, parallel or banked conduits together on common supports where practical.

Clean and dry raceways, boxes, fittings, and accessories before installation. Complete installation of electrical raceways before starting installation of cables/wires within raceways and fittings.

Install raceway systems giving right-of-way priority to other systems, such as plumbing, that are required to be installed at a specified slope.

Make raceway runs mechanically continuous. Provide a bushing or adapter where raceways enter boxes, fittings, cabinets, or other enclosures to protect wires from abrasion unless the box, fitting, cabinet, or enclosure design provides equivalent protection. In accordance with NEC 300.4, provide identified insulating bushings to protect conductors size 4 AWG and larger where these conductors enter a cabinet, a box, an enclosure, or a raceway unless the conductors are separated from the fitting or raceway by identified insulating material that is securely fastened in place, or where threaded hubs or bosses that are an integral part of a cabinet, box, enclosure, or raceway provide a smoothly rounded or flared entry for conductors. Securely connect raceways to boxes, cabinets, and enclosures.

Install raceways so that they do not damage or run through structural members. *NOTE:* Raceways may be run in notches in wood studs, joists, rafters, or other structural members where those notches do not reduce their load bearing ability. Protect raceways at those points against nails or screws by a steel plate at least 2 mm (1/16 inch) thick installed before the building finish is applied.

Provide bushings or grommets in holes punched in metal framing members, or use suitable tools in forming holes that raceways are not subjected to physical damage.

Run raceways for outlets on waterproof walls exposed. Set anchors for supporting raceway on waterproof walls in waterproof cement. Preferably, use supports that provide a space between the raceway and the wall.

Avoid moisture traps where possible. Where moisture traps are unavoidable, provide junction boxes with drain fittings at raceway low points. *NOTE:* There are no listed outlet boxes or flush device boxes that come provided with drain fittings.
Install a separate equipment grounding conductor in nonmetallic raceways where equipment grounding is required. Install a separate equipment grounding conductor where LFNC is used to connect equipment where flexibility is necessary to minimize the transmission of vibration from equipment or to provide flexibility for equipment that requires movement after installation. Where required or installed, equipment grounding conductors shall be installed in accordance with NEC 250.134(B). Where required or installed, equipment bonding jumpers shall be installed in accordance with NEC 250.102.

Do not install ENT or RNC where subject to ambient temperatures in excess of 122°F (50°C) unless otherwise listed in manufacturer’s instructions. Do not install ENT, LFNC, or RNC for conductors whose operating temperatures would exceed the listing of the raceway. Do not use LFNC at locations where ambient temperature may be 25°F (-4°C) or lower unless marked and listed by the manufacturer for lower temperature conditions.

Do not install angle connectors when LFNC is installed concealed. Straight LFNC fittings are permitted for direct burial or encasement in concrete.

Install polyethylene rope having not less than 200-pound tensile strength in empty raceways. Leave a minimum of 300 mm (12 inches) of slack at each end of the rope. Test spare raceways with a ball mandrel. Clear or replace any raceways which reject a ball mandrel.

Do not install soiled, damaged, broken, or marred material or products. Repair or replace with new.

4.1.1 Uses Permitted

NOTE: Extreme cold may cause some types of nonmetallic conduits to become brittle and therefore more susceptible to damage from physical contact.

Rigid PVC conduit is permitted to be used in accordance with the NEC in the following locations and applications:

- Concealed in walls, floors, and ceilings.
- In locations subject to severe corrosive influences as covered in NEC 300.6 and where subject to chemicals for which the materials are specifically approved.
- In cinder fill.
- In portions of dairies, laundries, canneries, or other wet locations, and in locations where walls are frequently washed, the entire conduit system, including boxes and fittings used, shall be installed and equipped so as to prevent water from entering the conduit. All supports, bolts, straps, screws, and so forth, must be of corrosion-resistant materials or be protected against corrosion by approved corrosion-resistant materials.
- In dry and damp locations not prohibited by NEC 352.12, see Section 4.1.2.
- For exposed work. PVC conduit used exposed in areas of physical damage shall be identified for the use. **NOTE:** PVC Conduit, Type Schedule 80, is identified for areas of physical damage.
- For underground installations, PVC shall be permitted for direct burial and underground encased in concrete. See NEC 300.5 and NEC 300.50.
- PVC conduit shall be permitted to support nonmetallic conduit bodies not larger than the largest trade size of an entering raceway. These conduit bodies shall not support luminaires or other equipment and shall not contain devices other than splicing devices as permitted by NEC 110.14(B) and NEC 314.16(C)(2).
- Conductors or cables rated at a temperature higher than the listed temperature rating of PVC conduit shall be permitted to be installed in PVC conduit, provided the conductors or cables are not operated at a temperature higher than the listed temperature rating of the PVC conduit.

RTRC conduit is permitted to be used in accordance with the NEC in the following locations and
applications:

- Concealed in walls, floors, and ceilings.
- In locations subject to severe corrosive influences as covered in NEC 300.6 and where subject to chemicals for which the materials are specifically approved.
- In cinder fill.
- In portions of dairies, laundries, canneries, or other wet locations, and in locations where walls are frequently washed, the entire conduit system, including boxes and fittings used, shall be installed and equipped so as to prevent water from entering the conduit. All supports, bolts, straps, screws, and so forth, shall be of corrosion-resistant materials or be protected against corrosion by approved corrosion-resistant materials.
- In dry and damp locations not prohibited by NEC 355.12, see Section 4.1.2.
- For exposed work if identified for such use. NOTE: RTRC, Type XW, is identified for areas of physical damage.
- For underground installations, see NEC 300.5 and NEC 300.50.
- RTRC shall be permitted to support nonmetallic conduit bodies not larger than the largest trade size of an entering raceway. These conduit bodies shall not support luminaires or other equipment and shall not contain devices other than splicing devices as permitted by NEC 110.14(B) and NEC 314.16(C)(2).
- Conductors or cables rated at a temperature higher than the listed temperature rating of RTRC conduit shall be permitted to be installed in RTRC conduit, if the conductors or cables are not operated at a temperature higher than the listed temperature rating of the RTRC conduit.

ENT is permitted to be used for the following purposes: NOTE: For the purpose of defining the permitted uses of ENT, the first floor of a building is defined as that floor that has 50 percent or more of the exterior wall surface area level with or above finished grade. One additional level that is the first level and not designed for human habitation and used only for vehicle parking, storage, or similar use is permitted.

- In any building not exceeding three floors above grade for exposed work (where not prohibited by the NEC; see Section 4.1.2), or concealed within walls, floors, and ceilings.
- In any building exceeding three floors above grade, ENT shall be concealed within walls, floors, and ceilings where the walls, floors, and ceilings provide a thermal barrier of material that has at least a 15-minute finish rating as identified in listings of fire-rated assemblies. NOTE: The 15-minute-finish-rated thermal barrier shall be permitted to be used for combustible or noncombustible walls, floors, and ceilings. Where a fire sprinkler system(s) is installed in accordance with NFPA 13-2010, Standard for the Installation of Sprinkler Systems, on all floors, ENT is permitted to be used within walls, floors, and ceilings, exposed or concealed, in buildings exceeding three floors above grade.
- In locations subject to severe corrosive influences as covered in NEC 300.6 and where subject to chemicals for which the materials are specifically approved.
- In concealed, dry, and damp locations not prohibited by NEC 362.12, see Section 4.1.2.
- Above suspended ceilings where the suspended ceilings provide a thermal barrier of material that has at least a 15-minute finish rating as identified in listings of fire-rated assemblies, except as permitted in NEC 362.10(1)(a).
- Where a fire sprinkler system(s) is installed in accordance with NFPA 13-2010, Standard for the Installation of Sprinkler Systems, on all floors, ENT is permitted to be used above suspended ceilings in buildings exceeding three floors above grade.
- Encased in poured concrete, or embedded in a concrete slab on grade where ENT is placed on sand or approved screenings, provided fittings identified for this purpose are used for connections.
- For wet locations indoors as permitted in this section or in a concrete slab on or below grade, with fittings listed for the purpose.
• Metric designator 16 through 27 (trade size 1/2 through 1) as listed manufactured prewired assembly.
• Conductors or cables rated at a temperature higher than the listed temperature rating of ENT shall be permitted to be installed in ENT, if the conductors or cables are not operated at a temperature higher than the listed temperature rating of the ENT.

LFNC is permitted to be used in exposed or concealed locations for the following purposes:
• Where flexibility is required for installation, operation, or maintenance.
• Where protection of the contained conductors is required from vapors, liquids, or solids.
• For outdoor locations where listed and marked as suitable for the purpose.
• For direct burial where listed and marked for the purpose.
• Type LFNC-B shall be permitted to be installed in lengths longer than 1.8 meters (6 feet) where secured in accordance with NEC 356.30. See Section 4.6.
• Type LFNC-B as a listed manufactured prewired assembly, metric designator 16 through 27 (trade size 1/2 through 1) conduit.
• For encasement in concrete where listed for direct burial and installed in compliance with NEC 356.42.

4.1.2 Uses Not Permitted

Rigid PVC conduit is not permitted to be used in the following locations and applications:
• In any hazardous (classified) location, except as permitted by NEC Articles other than NEC 352.
• For the support of luminaires or other equipment.
• Where subject to physical damage unless identified for such use.
• Where subject to ambient temperatures in excess of 50°C (122°F) unless listed otherwise.
• In theaters and similar locations, except as provided in NEC 518.4 and NEC 520.5.

RTRC is not permitted to be used in the following locations and applications:
• In any hazardous (classified) location, except as permitted by NEC Articles other than NEC 355, or in Class I, Division 2 locations, except as permitted in NEC 501.10(B)(3).
• For the support of luminaires or other equipment.
• Where subject to physical damage unless identified for such use.
• Where subject to ambient temperatures in excess of 50°C (122°F) unless listed otherwise.
• In theaters and similar locations, except as provided in NEC 518.4 and NEC 520.5.

ENT is not permitted to be used in the following locations and applications:
• In any hazardous (classified) location, except as permitted by NEC Articles other than NEC 362.
• For the support of luminaires and other equipment.
• Where subject to ambient temperatures in excess of 50°C (122°F) unless listed otherwise.
• For direct earth burial.
• Where the voltage is over 600 volts.
• In exposed locations, except as permitted by NEC 362.10(1), NEC 362.10(5), and NEC 362.10(7).
• In theaters and similar locations, except as provided in NEC 518.4 and NEC 520.5.
• Where exposed to the direct rays of the sun, unless identified as sunlight resistant.
• Where subject to physical damage.

LFNC is not permitted to be used in the following locations and applications:
• Where subject to physical damage.
• Where any combination of ambient and conductor temperatures is in excess of that for which the
LFNC is approved.

- In lengths longer than 1.8 meters (6 feet), except as permitted by NEC 356.10(5) or where a longer length is approved as essential for a required degree of flexibility.
- In any hazardous (classified) location, except as permitted by NEC Articles other than NEC 356.

4.2 Coordination

Coordinate final rough-in locations with field measurements and with the requirements of the actual equipment to be connected.

Coordinate raceway locations where space is limited for installation and access. Install exposed raceways and raceways in spaces above hung ceilings and in crawl spaces so that they do not interfere with ceiling inserts, luminaires (lighting fixtures), and ventilation ducts or outlets. Do not install raceways within an air handling plenum.

Coordinate with other trades to avoid installing raceways crossing pipe shafts, ventilating duct openings, water, steam or waste pipes, and radiator branches. Avoid horizontal or cross runs in building partitions or side walls. Maintain a minimum distance of 150 mm (6 inches) between nonmetallic raceways and parallel runs of flues, hot water pipes or other sources of heat. Install horizontal raceway runs above water and steam piping.

Arrange for chases, slots, and openings in building structure during progress of construction to allow for electrical installations. Coordinate the installation of raceways, required supporting devices, and sleeves in masonry walls, poured-in-place concrete, and other structural components as they are constructed.

4.3 Supports

Support raceway in accordance with its listing, manufacturer instructions, and the National Electrical Code. Install nonmetallic raceways as a complete system in compliance with NEC 300.18.

Provide raceway supports, support hardware, and fasteners compatible with the raceway system, suitable for use in the installed environment, and designed specifically for the intended purpose.

Support raceways independently of supports for other trades, such as ceiling support wires, HVAC or piping, unless detailed in contract documents or approved by the Engineer of Record.

Properly support and anchor raceways for their entire length by structural materials. Do not install raceways without support across any span.

Support riser raceway at each floor level with clamp hangers. Arrange supports so the load produced by the weight of the raceway and the enclosed conductors are carried entirely by the raceway supports with no weight on terminals. Provide manufacturer recommended supports for conductors within raceway risers.

Support individual horizontal raceways by either pipe straps or separate pipe hangers. Spring steel fasteners may be used in lieu of pipe straps or hangers for 40 mm (1-1/2-inch) and smaller raceways in dry locations.

Arrange raceway supports and provide additional support strength where required to prevent distortion of raceway during wire pulling.
Support raceways within 300 mm (12 inches) of unsupported boxes and accessible fittings. Fasten electrical boxes firmly and rigidly to substrates, or structural surfaces to which attached, or solidly embed electrical boxes in concrete or masonry.

NOTE: RNC is permitted to support nonmetallic conduit bodies not larger than the largest trade size of an entering raceway. The conduit bodies cannot contain devices or support fixtures or other equipment.

Use vibration and shock-resistant fasteners for attachment to concrete slabs.

Fasten raceways to the rib of corrugated metal roof decking.

Do not weld channels, angle-iron, pipe straps, or items other than threaded studs to steel structures.

Do not cut main reinforcing bars when drilling holes to a depth of more than 40 mm (1-1/2 inches) in reinforced concrete beams or to a depth of more than 3/4 inch in concrete decks. Fill unused holes.

Do not fasten raceway with wire, tie wraps, or perforated pipe straps.

Fasten rigid PVC conduit so that movement from thermal expansion or contraction is permitted.

Securely fasten RNC within 900 mm (3 feet) of each outlet box, junction box, device box, conduit body, or other conduit termination. RNC listed for securing at other than 900 mm (3 feet) is permitted to be installed in accordance with the listing.

Support RNC in accordance with NEC Table 352.30 for PVC conduit and NEC Table 355.30 for RTRC. See Annex A. Conduit listed for support at spacing other than as shown in the applicable NEC Table is permitted to be installed in accordance with the listing. Horizontal runs of RNC supported by openings through framing members at intervals not exceeding those in the applicable NEC Table and securely fastened within 900 mm (3 feet) of termination points are permitted.

Securely fasten and support ENT at intervals not exceeding 900 mm (3 feet) and within 900 mm (3 feet) of each outlet box, device box, junction box, cabinet, or fitting where it terminates. NOTE: Lengths of ENT not exceeding a distance of 1.8 meters (6 feet) from a luminaire terminal connection for tap connections to lighting luminaires are permitted without being secured. Lengths of ENT not exceeding 1.8 meters (6 feet) from the last point where the raceway is securely fastened for connections within an accessible ceiling to luminaire(s) or other equipment are permitted without being secured. For concealed work in finished buildings or prefinished wall panels where such securing is impracticable, unbroken lengths (without coupling) of ENT is permitted to be fished.

Horizontal runs of ENT supported by openings in framing members at intervals not exceeding 900 mm (3 feet) and securely fastened within 900 mm (3 feet) of termination points are permitted.

Support LFNC at intervals not exceeding 900 mm (3 feet) and within 300 mm (12 inches) on each side of every outlet box, junction box, cabinet, or fitting. NOTE: Where secured at the termination in accordance with the NEC, securing and supporting LFNC is not required where it is fished, installed in lengths not exceeding 900 mm (3 feet) at terminals where flexibility is required, or where installed in lengths not exceeding 1800 mm (6 feet) for lighting fixture connections.

NOTE: Where securely fastened within 300 mm (12 inches) of termination points, LFNC can be run horizontally through framing member openings at intervals not exceeding 900 mm (3 feet) without additional securing or support.
Provide boxes, conduit bodies, and fittings for nonmetallic raceway systems for making splices and taps. Install a box or conduit body at each conductor splice point, outlet point, switch point, junction point, termination point, or pull point, unless otherwise permitted in NEC 300.15.

Support boxes in accordance with manufacturer instructions and the National Electrical Code.

Follow the manufacturer instructions for attaching nonmetallic raceways to boxes and enclosures. Where installed, tighten locknuts using appropriate tools in accordance with manufacturer instructions. When securing locknuts, avoid applying excessive pressure when gripping the body of the fitting. For threaded fittings, ensure that a minimum of 3-1/2 threads are engaged.

Install boxes in locations which ensure accessibility to enclosed electrical wiring. Avoid installing boxes back-to-back in walls. Provide not less than 175 mm (7 inches) of separation between boxes opening onto different sides of the same wall. Do not locate a pull or junction box within 600 mm (24 inches) of any other pull or junction box. Follow manufacturer instructions for spacing requirements.

Position recessed outlet boxes accurately (from flush to within 3 mm (1/8 inch) of wall surface) to allow for surface finish thickness. Do not span different types of building finishes with boxes, covers or device plates. Saw-cut box openings in masonry walls. Locate boxes at joint of masonry units.

Center outlet boxes above doorways 150 mm (6 inches) above the door head, unless otherwise indicated on contract documents or required by physical conditions.

Locate boxes for switches near doorways on the side opposite the door hinges and within approximately 4” of the door trim, unless otherwise indicated on contract documents or required by physical conditions.

Locate outlet boxes for switches and receptacles on columns or pilasters off the centers of the columns far enough to allow for future installation of partitions where possible.

Mount outlet boxes for switches with the long axis vertical, unless otherwise indicated on contract documents. Mount boxes for receptacles either vertically or horizontally, but consistently one way. Mount three or more gang boxes with the long axis horizontal.

Mount pull boxes concealed in non-accessible walls or ceilings, with the covers flush with the finished wall or ceiling. Set floor boxes level and adjust to be flush with finish flooring material. Install floor boxes in concrete floor slabs so they are completely enveloped in concrete except at top.

Use standard sized coverplates.

4.5 Sleeves

Install sleeves for raceway penetrations of concrete slabs and walls and all other fire-rated floors and walls, except where core-drilled holes are used. Use listed penetration methods and certified firestopping methods for penetrations through masonry partitions, fire-rated gypsum board walls, and other fire-rated floor and wall assemblies.

Where sleeves are installed through existing slabs or partitions, completely fill the void between the sleeve and masonry with expanding cement grout.

Identify unused sleeves and slots for future use by permanently identifying the size and purpose of the covered slot or sleeve.
4.6 Expansion and Contraction of Rigid Nonmetallic Conduit (RNC)

Consult the manufacturer for recommendations for accommodating thermal expansion and contraction of the RNC system, especially for installations where conduits are subjected to significant variations in temperature during normal operation. NOTE: Backfill trenches soon after the installation of conduits to prevent expansion or contraction due to temperature changes in the ambient air.

Allow conduit temperature to normalize near the ambient temperature or the expected service environment temperature before installation.

Install expansion fittings wherever structural expansion joints are crossed (Figure 4.6). Leave pipe straps loose to allow movement of the raceway. NOTE: Expansion joints are not required where RNC crosses building control joints, if the control joint does not act as an expansion joint.

Provide expansion fittings or change of direction fittings to control thermal expansion and contraction where the length change is estimated to be 6 mm (¼ inch) or greater in a straight run between securely mounted items such as boxes, cabinets, elbows, or other conduit terminations. Calculate the total change in length of the conduit run using actual conduit lengths and temperatures and applicable NEC Tables (Table 352.44 for PVC and Table 355.44 for RTRC). See Annex A.

4.7 Bending

Make bends in accordance with manufacturer instructions and NEC requirements.

Allow joints to thoroughly set before bending and placement. See Section 4.9.

Make bends so that the tubing or conduit will not be damaged and that the internal diameter will not be effectively reduced.

Make field bends of RNC with bending equipment identified for the purpose. Do not make field bends less than the manufacturer recommended and Code required minimum bending radius. The radius of the curve to the centerline of such bends shall not be less than shown in NEC Table 2, Chapter 9. See Annex A. Use factory elbows for all bends smaller than manufacturer recommended minimum bending radius.

Do not exceed the equivalent of four quarter bends (360 degrees total) between pull points, such as between conduit bodies and boxes.

Make bends in parallel or banked runs from the same center line so that the bends are parallel. Use factory elbows in banked runs only where they can be installed parallel.

Make bends and offsets such that the legs of a bend are in the same plane and the straight legs of offsets are parallel.

Run concealed raceways with a minimum of bends. Arrange raceways concealed in walls and slabs such that the curved portions of bends are not visible above the finished surface.

4.8 Cutting Raceways

Cut raceways to length using manufacturer recommended tools and methods. Ensure that all cuts are
clean and square with the barrel of the raceway.

Deburr cut ends using suitable tools and as recommended by the manufacturer. Trim cut ends inside and outside to remove rough edges. *NOTE:* Slightly chamfering the inside and outside edges of the cut end of the raceway can facilitate joining, can prevent cable damage during pulling operations, and can facilitate rope pulling through the raceway.

Insert raceways fully into fittings until the raceway reaches the end stop of the fitting.

4.9 Solvent Cementing Joints

NOTE: The best solvent cementing results are obtained in temperatures above 5°C (40°F). In colder temperatures, allow longer times for initial setting. In cold weather, do not put joints under stress for 24 to 48 hours after setting.

NOTE: Nonmetallic raceway solvent cement is highly flammable and should be considered a hazardous material. Avoid using solvent cement in the presence of ignition sources such as lighted smoking materials, open flames, ongoing welding processes, and electrical arcing. Avoid breathing concentrated fumes and provide adequate ventilation in confined areas. Read and follow all manufacturer precautions on the container.

Check condition of cement before use. *NOTE:* Cement should have a fluid consistency. Dispose of gelled or lumpy cement in accordance with applicable environmental regulations. *NOTE:* Do not attempt to liquefy or dilute gelled or lumpy cement. Do not attempt to warm cement using electric or propane heaters, or open flame. Keep can lids closed while not in use; cement will absorb moisture from the air.

Follow manufacturer instructions for selecting suitable solvent cement for the installation requirements. Match temperature rating of cement to installation conditions.

NOTE: Three types of cement are available for RNC, based on the viscosity: regular bodied, medium bodied, and heavy bodied. Regular bodied cement is suitable for most raceway applications up through 150 mm (6 inches). For better gap filling needs, a medium bodied cement should be selected. For raceways, where a watertight joint is needed, or for extremely hot weather use, select a heavy bodied cement. For cement joints in corrugated ENT, use manufacturer recommended ENT solvent cement. Do not use PVC solvent cement on the threads of threaded fittings.

Wipe joint surfaces clean of dirt or moisture or other contaminants. Clean dirty or oil-coated raceway joining surfaces using PVC cleaner or primer in accordance with manufacturer instructions. Thoroughly dry raceway joining surfaces. *NOTE:* Do not attempt to join raceways when any indication of moisture is present.

Cool joint areas of raceways that are 32°C (90°F) or above by shading or by applying a damp cloth. *NOTE:* Allow joining surfaces of raceways to thoroughly dry before applying cement when using a damp cloth to cool raceways.

NOTE: Hot raceway surfaces cause rapid drying of the cement, resulting in insufficient welding. Verify that cement is liquid on raceway surfaces when joining the spigot and bell or fitting. Using a heavier, slower drying cement may be appropriate when it is impractical to cool the raceway surfaces prior to joining.

Apply a full, even coat of cement to the entire area of the spigot that will be inserted into the bell or
fitting. Use the dauber applicator supplied in the lid of the cement container. Apply the cement quickly and evenly around the spigot and inside the bell or fitting.

Insert the spigot fully into the bell or fitting while the cement is still liquid, twisting the spigot section one-quarter turn as insertion is made. Hold the joint firmly together for 10 to 20 seconds without movement. **NOTE: Cold weather applications may require a longer holding time.** If the spigot section backs out upon release, pull the joint apart, apply another coat of cement, reassemble, and hold until the joint does not back out upon release.

NOTE: A small bead of cement should appear around the lip of the bell or fitting if adequate cement has been applied. Wipe off excess cement after the joint has set.

Carefully handle newly assembled joints until the cement has fully cured. If manufacturer instructions are unavailable, use the minimum recommended curing times found in **Table 4.9 Minimum Cement Curing Time.**

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 to 40°C (60 to 100°F)</td>
<td>30 minutes</td>
</tr>
<tr>
<td>5 to 15°C (40 to 60°F)</td>
<td>1 hour</td>
</tr>
<tr>
<td>-5 to 5°C (20 to 40°F)</td>
<td>2 hours</td>
</tr>
<tr>
<td>-20 to -5°C (0 to 20°F)</td>
<td>4 hours</td>
</tr>
</tbody>
</table>

Note: Joint damage or loosening may occur up to 48 hours after assembly in temperatures below 5°C (40°F), if the joints are severely stressed.

4.9.1 Solvent Welding Fittings to ENT

Use only solvent cement or other PVC cement which is specifically labeled for use with ENT.

NOTE: Do not use heavy- or medium-bodied PVC cement or combinations of ABS and PVC cement.

Remove all dust, dirt and moisture from ENT and fittings before applying cement. **NOTE:** Do not use primer or cleaner.

Apply solvent cement with the natural bristle brush supplied in the can lid. **NOTE:** Do not use a dauber.

Apply a light, uniform coat of cement inside the socket fitting. Apply a light, uniform coat of cement to the outside surface of the ENT to the depth of the fitting socket. Brush around the corrugations of the ENT. **NOTE:** Do not brush longitudinally along the ENT.

Brush away any excess cement out of the grooves of the ENT. **NOTE:** Excess cement may cause burning and excess softening of the ENT which may result in joint failure under stress.

Quickly insert tubing into fitting while cement is still wet up to the center stop of the fitting. Give the fitting a one-quarter turn and hold firmly in place for 15 to 30 seconds. Do not disturb the fitting for two to five minutes to allow the joint to set firmly.
4.10 Raceways Concealed in Masonry and Concrete

Secure raceways to reinforcing rods or otherwise secure raceways to prevent movement such as floating or sagging when concrete is placed. Locate spacers, if used, at intervals not exceeding the maximum spacing indicated in Table 4.10 Maximum Spacer Intervals.

Table 4.10 Maximum Spacer Intervals.

<table>
<thead>
<tr>
<th>Raceway Size</th>
<th>Maximum Spacing, Meters (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 - 2</td>
<td>1.2 – 1.8 (4 – 6)</td>
</tr>
<tr>
<td>2-1/2 - 3-1/2</td>
<td>1.5 – 2.4 (5 – 8)</td>
</tr>
<tr>
<td>4 - 6</td>
<td>1.8 – 3.0 (6 – 10)</td>
</tr>
</tbody>
</table>

Rising temperatures from curing concrete can cause expansion of nonmetallic raceways. Pour concrete from the center of the raceway run toward each free end or from one tie-in point toward the free end of the raceway. Make permanent raceway end-connections after the concrete and raceway temperature has normalized.

Locate raceways in the middle third of cast-in-place slabs and walls. Ensure a minimum of 25 mm (1 inch) of concrete cover over raceways. Place raceways between the bottom reinforcing steel and top reinforcing steel. Route raceways parallel and perpendicular to the main reinforcing steel within slabs. When routing raceways at right angles to reinforcing steel, place raceways close to slab supports.

Provide a lateral separation of raceways not less than three raceway diameters, except where the arrangement is approved or where contract documents indicate that the concrete slab has been specially designed to accommodate a closer spacing, such as where raceways enter wire closets, panelboards, or electrical boxes.

Transition ENT to RNC before rising above floor slabs. *NOTE: Where permitted, ENT and LFNC may be used for final equipment connections 150 mm (6 inches) or more above the floor.*

Do not install raceways in slabs or walls when the outside raceway diameter exceeds 1/3 of the slab or wall thickness. Do not install raceways in a slab topping of 50 mm (2 inches) or less. Do not route raceways such that raceways cross in slabs above grade.

4.11 Seals

Use manufacturer recommended watertight and smoketight wall and floor seals, of types and sizes required suitable for sealing around raceway, pipe, or tubing passing through concrete floors and walls, and where raceways pass between areas of differing temperatures, such as into or out of conditioned spaces, freezers, unheated and heated spaces, or between buildings.

Seal penetrations in floors, walls, or other general construction with a listed, 3 hour-rated smoke and firestopping sealant.

Close floor slots and openings with 16-gauge galvanized steel sheet supported on 25 mm by 25 mm by 3 mm (1-inch by 1-inch by 1/8-inch) structural angle drilled or supported with power-driven studs into the building structure. Firestop with a minimum of 25 mm (1 inch) thick layer of silicone elastomer, with
the top surface of the silicone elastomer approximately 25 mm (1 inch) below the finished floor slab surface.

Close openings in walls with 16-gauge galvanized steel sheet securely attached at the midpoint of the wall thickness and firestopped on both sides of the steel sheet with a minimum of 13 mm (½ inch) thick layer of non-sagging silicone elastomer that completely covers the opening.

Tighten sleeve seal screws until grommets have expanded to form a watertight and smoketight seal.

4.12 Cleaning

Upon completion of installation of raceway systems, inspect interiors of raceways at all outlet, junction and pull boxes. Remove burrs, dirt, and construction debris. Repair damaged finish, including chips, scratches, and abrasions.

Run a swab or mandrel through raceways to remove dirt and blockages. Replace raceways which are deformed and prevent the passage of a mandrel.

Use suitable temporary closure protection to prevent further contamination from construction debris, foreign materials, dirt, moisture, plaster. Provide knockout closures to cap unused knockout holes where blanks have been removed. Protect stub-ups from physical damage during construction where raceways rise from floor slabs.

Label and identify raceways in accordance with contract documents. Install electrical identification prior to installation of acoustical ceilings and similar finishes that conceal raceways.
ANNEX A: NEC Tables

Table 352.30 Support of Rigid Polyvinyl Chloride Conduit (PVC)

(Insert Table Here)

Reprinted with permission from NFPA 70®-2014, National Electrical Code®, Copyright © 2013, National Fire Protection Association, Quincy, MA. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.
Table 352.44 Expansion Characteristics of PVC Rigid Nonmetallic Conduit Coefficient of Thermal Expansion = $6.084 \times 10^{-5} \text{ mm/mm/°C (3.38 } \times 10^{-5} \text{ in./in./°F)}$

(Insert Table Here)

Reprinted with permission from NFPA 70®-2014, National Electrical Code®, Copyright © 2013, National Fire Protection Association, Quincy, MA. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.
Table 355.30 Support of Reinforced Thermosetting Resin Conduit (RTRC)

(Insert Table Here)

Reprinted with permission from NFPA 70®-2014, National Electrical Code®, Copyright © 2013, National Fire Protection Association, Quincy, MA. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.
Table 355.44 Expansion Characteristics of Reinforced Thermosetting Resin Conduit (RTRC) Coefficient of Thermal Expansion = 2.7×10^{-5} mm/mm/°C (1.5×10^{-5} in./in./°F)

(Insert Table Here)

Reprinted with permission from NFPA 70®-2014, National Electrical Code®, Copyright © 2013, National Fire Protection Association, Quincy, MA. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.
Table 1, Chapter 9 - Table 1 Percent of Cross Section of Conduit and Tubing for Conductors and Cables

(Insert Table Here)

Reprinted with permission from NFPA 70®-2014, National Electrical Code®, Copyright © 2013, National Fire Protection Association, Quincy, MA. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.
Table 2, Chapter 9 – Table 2 Radius of Conduit and Tubing Bends

(Insert Table Here)

Reprinted with permission from NFPA 70®-2014, National Electrical Code®, Copyright © 2013, National Fire Protection Association, Quincy, MA. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.
This publication, when used in conjunction with the National Electrical Code and manufacturers’ literature, provides sufficient information to install nonmetallic raceways. The following publications may also provide useful information:

National Fire Protection Association
Batterymarch Park
P.O. Box 9101
Quincy, MA 02269-9101
(617) 770-3000 tel
(617) 770-3500 fax
www.nfpa.org

NFPA 70-2014, National Electrical Code (ANSI)

National Electrical Contractors Association
3 Bethesda Metro Center Suite 1100
Bethesda, MD 20814
(301) 215-4504
(301) 215-4500 Fax
orderdesk@necanet.org
www.neca-neis.org

Other National Electrical Installation Standards™ Published by NECA

(Insert Current List of NEIS Here)
Figure 3.2 Transporting Bundle of Nonmetallic Raceway Using a Forklift
NOTE: LEAVE PIPE STRAPS LOOSE TO ALLOW MOVEMENT OF THE PIPE.

Figure 4.6 Installing Expansion Joint in Rigid Nonmetallic Conduit (RNC)